By Topic

Specular Free Spectral Imaging Using Orthogonal Subspace Projection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhouyu Fu ; Australian National University, Canberra, ACT 0200, Australia ; R. T. Tan ; T. Caelli

Specularity is an important issue in computer vision. Many algorithms have been proposed to remove highlights for color images. However, to our knowledge, no work has been done so far which specifically handles highlights in spectral imaging. In this paper, we introduce a specular invariant representation for hyperspectral images based on the dichromatic model and orthogonal subspace projection. It is a simple one step algorithm which only involves pixel-level operations, thus it does not require any segmentation. Nor does it require any pre/postprocessing or explicit spectral normalization. Importantly, unlike the previous methods for color images, it can be theoretically extended to handle highlights caused by multicolored illuminations. Experimental results demonstrate the effectiveness of our algorithm

Published in:

18th International Conference on Pattern Recognition (ICPR'06)  (Volume:1 )

Date of Conference:

0-0 0