By Topic

Recognition and Segmentation of Scene Content using Region-Based Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kaufhold, J. ; Adv. Concepts Bus. Unit, SAIC, McLean, VA ; Collins, R. ; Hoogs, A. ; Rondot, P.

We present a novel method for joint segmentation and pixelwise classification of images, classifying each pixel in the image into one of a set of broad categories. We propose a 2-step approach for this problem, first estimating image structure through dense region segmentation, which provides initial spatial grouping (superpixels), then performing recognition by classifying each superpixel according to its features. Two types of region features are investigated: perceptual grouping features derived from neighborhood relations in the superpixel graph, and a histogram of pixel textons within the superpixel. Region classification is performed by boosting for perceptual features and histogram matching for texton features. We also introduce a novel extension of multi-class boosting: MAP estimation in the space of classifier ensemble outputs. Extensive results on aerial imagery are presented using a label vocabulary of trees, roads, vehicles, grass, shadows, and buildings. We evaluate the two methods across the categories, and compare them to the standard approach of classifying image blocks without prior segmentation. In our experiments perceptual features using multi-class boosting provide the best performance

Published in:

Pattern Recognition, 2006. ICPR 2006. 18th International Conference on  (Volume:1 )

Date of Conference:

0-0 0