By Topic

HMM-based Human Action Recognition Using Multiview Image Sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ahmad, M. ; Dept. of Comput. Sci. & Eng., Korea Univ., Seoul ; Seong-Whan Lee

In this paper, we present a novel method for human action recognition from any arbitrary view image sequence that uses the Cartesian component of optical flow velocity and human body silhouette feature vector information. We use principal component analysis (PCA) to reduce the higher dimensional silhouette feature space into lower dimensional feature space. The action region in an image frame represents Q-dimensional optical flow feature vector and R-dimensional silhouette feature vector. We represent each action using a set of hidden Markov models and we model each action for any viewing direction by using the combined (Q + R) -dimensional features at any instant of time. We perform experiments of the proposed method by using KU gesture database and manually captured data. Experimental results of different actions from any viewing direction are correctly classified by our method, which indicate the robustness of our view-independent method

Published in:

Pattern Recognition, 2006. ICPR 2006. 18th International Conference on  (Volume:1 )

Date of Conference:

0-0 0