By Topic

Using Gaussians Functions to Determine Representative Clustering Prototypes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sassi, M. ; Ecole Nationale d''Ingenieurs de Tunis ; Touzi, A.G. ; Ounelli, H.

Clustering is a process for grouping a set of objects into classes or clusters so that the objects within a cluster have high similarity, but are very dissimilar to objects in other clusters. Choosing cluster centers is crucial during clustering process. In this paper, we propose an improved fuzzy clustering approach, named FGWC (fuzzy Gaussian weights clustering). We compared FGWC with an enhanced fuzzy C-means (EFCM) clustering approach that we already presented. The EFCM determines automatically the number of clusters which is a user-defined parameter for FCM, and uses the fuzzy weights to compute cluster prototypes, but does nor take into account the distribution of the clusters. FGWC uses Gaussian functions for determining clustering prototypes. The generated cluster centers are more representative and accurate with FGWC than with EFCM

Published in:

Database and Expert Systems Applications, 2006. DEXA '06. 17th International Workshop on

Date of Conference:

0-0 0