Cart (Loading....) | Create Account
Close category search window
 

Using Gaussians Functions to Determine Representative Clustering Prototypes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Sassi, M. ; Ecole Nationale d''Ingenieurs de Tunis ; Touzi, A.G. ; Ounelli, H.

Clustering is a process for grouping a set of objects into classes or clusters so that the objects within a cluster have high similarity, but are very dissimilar to objects in other clusters. Choosing cluster centers is crucial during clustering process. In this paper, we propose an improved fuzzy clustering approach, named FGWC (fuzzy Gaussian weights clustering). We compared FGWC with an enhanced fuzzy C-means (EFCM) clustering approach that we already presented. The EFCM determines automatically the number of clusters which is a user-defined parameter for FCM, and uses the fuzzy weights to compute cluster prototypes, but does nor take into account the distribution of the clusters. FGWC uses Gaussian functions for determining clustering prototypes. The generated cluster centers are more representative and accurate with FGWC than with EFCM

Published in:

Database and Expert Systems Applications, 2006. DEXA '06. 17th International Workshop on

Date of Conference:

0-0 0

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.