Cart (Loading....) | Create Account
Close category search window
 

A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beam Width and Side-Lobe Level

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dolph, C.L. ; Formerly, Combined Research Group, Naval Research Laboratow, Washington, D.C.; now, Bell Telephone Laboratories, Murray Hill, N.J.

A one-parameter family of current distributions is derived for symmetric broadside arrays of equally spaced point sources energized in phase. For each value of the parameter, the corresponding current distribution gives rise to a pattern in which (1) all the side lobes are at the same level; and (2) the beam width to the first null is a minimum for all patterns arising from symmetric distributions of in-phase currents none of whose side lobes exceeds that level. Design curves relating the value of the parameter to side-lobe level as well as the relative current values expressed as a function of side-lobe level are given for the cases of 8-, 12-, 16-, 20-, and 24-element linear arrays.

Published in:

Proceedings of the IRE  (Volume:34 ,  Issue: 6 )

Date of Publication:

June 1946

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.