By Topic

Sliding-Mode Control of Retarded Nonlinear Systems Via Finite Spectrum Assignment Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oguchi, T. ; Dept. of Mech. Eng., Tokyo Metropolitan Univ. ; Richard, J.-P.

In the present study, a sliding-mode control design method based on the finite spectrum assignment procedure is proposed. The finite spectrum assignment for retarded nonlinear systems can transform retarded nonlinear systems into delay-free linear systems via a variable transformation and a feedback, which contain the past values of the state. This method can be considered to be an extension of both the finite spectrum assignment for retarded linear systems with controllability over polynomial rings of the delay operator and the exact linearization for finite dimensional nonlinear systems. The proposed method is to design a sliding surface via the variable transformation used in the finite spectrum assignment and to derive a switching feedback law. The obtained surface contains not only the current values of the state variables but also the past values of the state variables in the original coordinates. The effectiveness of the proposed method is tested by an illustrative example

Published in:

Automatic Control, IEEE Transactions on  (Volume:51 ,  Issue: 9 )