By Topic

Exploring Fine-Grained Fault Tolerance for Nanotechnology Devices With the Recursive NanoBox Processor Grid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Advanced molecular nanotechnology devices are predicted to have exceedingly high transient fault rates and large numbers of inherent device defects compared to conventional CMOS devices. We describe and evaluate the Recursive NanoBox Processor Grid as an application specific, fault-tolerant, parallel computing system designed for fabrication with unreliable nanotechnology devices. In this study we construct hardware description language models of a NanoBox Processor cell and evaluate the effectiveness of our recursive fault masking approach in the presence of random errors. Our analysis shows that complex circuits constructed with encoded lookup tables can operate correctly despite 2% of the nodes being in error. The circuits operate partially correct with up to 4% of the nodes being in error

Published in:

IEEE Transactions on Nanotechnology  (Volume:5 ,  Issue: 5 )