By Topic

Early Identification of Machine Fault Based on Kernel Principal Components Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liu Yibing ; North China Electr. Power Univ., Beijing ; Ma Zhiyong ; Qian He ; Lv Peng

Principal components analysis (PCA) is used to classify the running condition of a machine by means of projecting the original data to the principal components space. However, if the data are concentrated in a nonlinear subspace, PCA will fail to work well. Kernel principal components analysis (KPCA) transforms the input data from the original input space into a higher dimensional feature space with the nonlinear mapping, and then uses the nonlinear principal components to realize the classification. In this paper a case of gear fault diagnosis was studied with KPCA. The characteristic values of frequent domain from vibration signals of the gearbox under the running condition were extracted, and the KPCA method was used to classify gear crack fault. The result shows that KPCA is more effective to distinguish the state of the gear and more suitable to diagnose the gear faults in early stage

Published in:

Innovative Computing, Information and Control, 2006. ICICIC '06. First International Conference on  (Volume:3 )

Date of Conference:

Aug. 30 2006-Sept. 1 2006