Cart (Loading....) | Create Account
Close category search window
 

LTL with the Freeze Quantifier and Register Automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Demri, S. ; LSV, CNRS ; Lazic, R.

Temporal logics, first-order logics, and automata over data words have recently attracted considerable attention. A data word is a word over a finite alphabet, together with a datum (an element of an infinite domain) at each position. Examples include timed words and XML documents. To refer to the data, temporal logics are extended with the freeze quantifier, first-order logics with predicates over the data domain, and automata with registers or pebbles. We investigate relative expressiveness and complexity of standard decision problems for LTL with the freeze quantifier (LTLdarr), 2-variable first-order logic (FO2) over data words, and register automata. The only predicate available on data is equality. Previously undiscovered connections among those formalisms, and to counter automata with incrementing errors, enable us to answer several questions left open in recent literature. We show that the future-time fragment of LTLdarr which corresponds to FO2 over finite data words can be extended considerably while preserving decidability, but at the expense of non-primitive recursive complexity, and that most of further extensions are undecidable. We also prove that surprisingly, over infinite data words, LTLdarr without the 'until' operator, as well as nonemptiness of one-way universal register automata, are undecidable even when there is only 1 register

Published in:

Logic in Computer Science, 2006 21st Annual IEEE Symposium on

Date of Conference:

0-0 0

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.