By Topic

Mapping of Fault-Tolerant Applications with Transparency on Distributed Embedded Systems*

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
V. Izosimov ; Linköping University, Sweden ; P. Pop ; P. Eles ; Z. Peng

In this paper we present an approach for the mapping optimization of fault-tolerant embedded systems for safety-critical applications. Processes and messages are statically scheduled. Process re-execution is used for recovering from multiple transient faults. We call process recovery transparent if it does not affect operation of other processes. Transparent recovery has the advantage of fault containment, improved debugability and less memory needed to store the fault-tolerant schedules. However, it will introduce additional delays that can lead to violations of the timing constraints of the application. We propose an algorithm for the mapping of fault-tolerant applications with transparency. The algorithm decides a mapping of processes on computation nodes such that the application is schedulable and the transparency properties imposed by the designer are satisfied. The mapping algorithm is driven by a heuristic that is able to estimate the worst-case schedule length and indicate whether a certain mapping alternative is schedulable

Published in:

9th EUROMICRO Conference on Digital System Design (DSD'06)

Date of Conference:

0-0 0