By Topic

Real-time Pedestrian Detection Using LIDAR and Convolutional Neural Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Szarvas, M. ; DENSO IT Lab., Inc., Tokyo ; Sakai, U. ; Ogata, J.

This paper presents a novel real-time pedestrian detection system utilizing a LIDAR-based object detector and convolutional neural network (CNN)-based image classifier. Our method achieves over 10 frames/second processing speed by constraining the search space using the range information from the LIDAR. The image region candidates detected by the LIDAR are confirmed for the presence of pedestrians by a convolutional neural network classifier. Our CNN classifier achieves high accuracy at a low computational cost thanks to its ability to automatically learn a small number of highly discriminating features. The focus of this paper is the evaluation of the effect of region of interest (ROI) detection on system accuracy and processing speed. The evaluation results indicate that the use of the LIDAR-based ROI detector can reduce the number of false positives by a factor of 2 and reduce the processing time by a factor of 4. The single frame detection accuracy of the system is above 90% when there is 1 false positive per second

Published in:

Intelligent Vehicles Symposium, 2006 IEEE

Date of Conference:

0-0 0