By Topic

Linear circuit models of PWM flyback and buck/boost converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Czarkowski ; Dept. of Electr. Eng., Wright State Univ., Dayton, OH, USA ; M. K. Kazimierczuk

A method for modeling PWM converters operating in continuous conduction mode (CCM) is introduced. First, static voltage and current transfer functions of the idealized switching part of the converters are found. Second, the linearization of these transfer functions at the operating point is carried out, and the idealized switching part is replaced by dependent current and voltage sources. Third, the equivalent average resistance of parasitic resistances and equivalent average voltage of offset voltage sources of switches are determined using the principle of energy conservation. The method leads to linear DC and small-signal circuit models of a PWM converter. To illustrate the method, the analysis of the PWM flyback converter is given. Design equations for DC voltage transfer function, efficiency, and small-signal characteristics are derived

Published in:

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications  (Volume:39 ,  Issue: 8 )