By Topic

A multi-path routing strategy with guaranteed in-order packet delivery and fault-tolerance for networks on chip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this work we present a multi-path routing strategy that guarantees in-order packet delivery for networks on chips (NoCs). We present a design methodology that uses the routing strategy to optimally spread the traffic in the NoC to minimize the network bandwidth needs and power consumption. We also integrate support for tolerance against transient and permanent failures in the NoC links in the methodology by utilizing spatial and temporal redundancy for transporting packets. Our experimental studies show large reduction in network bandwidth requirements (36.86% on average) and power consumption (30.51% on average) compared to single-path systems. The area overhead of the proposed scheme is small (a modest 5% increase in network area). Hence, it is practical to be used in the on-chip domain

Published in:

Design Automation Conference, 2006 43rd ACM/IEEE

Date of Conference:

0-0 0