By Topic

Stochastic variational analysis of large power grids considering intra-die correlations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. Ghanta ; Dept. of EE, Arizona State Univ., Tempe, AZ, USA ; S. Vrudhula ; S. Bhardwaj ; R. Panda

For statistical timing and power analysis that are very important problems in the sub-100 nm technologies, stochastic analysis of power grids that characterizes the voltage fluctuations due to process variations is inevitable. In this paper, we propose an efficient algorithm for the variational analysis of large power grids in the presence of a significant number of Gaussian intra-die process variables that are correlated. We consider variations in the power grid's electrical parameters as spatial stochastic processes and express them as linear expansions in an orthonormal series of random variables using the Karhunen-Loeve (KLE) method. The voltage response is then represented as an orthonormal polynomial series and the coefficients are obtained optimally using the Galerkin method. We propose a novel method to separate the stochastic analysis for the random variables that effect only the inputs (e.g, drain currents) and for those that effect the system parameters as well (e.g., conductance, capacitance). We show that this parallelism can result in significant speed-ups in addition to the speed-ups inherent to Galerkin-based methods. Our analysis has been applied to several industrial power grids and the results show speed-ups of up to two orders of magnitude over Monte Carlo simulations for comparable accuracy

Published in:

2006 43rd ACM/IEEE Design Automation Conference

Date of Conference:

0-0 0