Cart (Loading....) | Create Account
Close category search window
 

An Updated Taxonomy of Evolutionary Computation Problems using Graph-based Evolutionary Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ashlock, D.A. ; Mathematics and Statistics, University of Guelph, Guelph, ON Canada N1G 2R4, dashlock@uoguelph.ca ; Bryden, K.M. ; Corns, S. ; Schonfeld, J.

Graph based evolutionary algorithms use combinatorial graphs to impose a topology or "geographic structure" on an evolving population. It has been demonstrated that, for a fixed problem, time to solution varies substantially with the choice of graph. This variation is not simple with very different graphs yielding faster solution times for different problems. Normalized time to solution for many graphs thus forms an objective character that can be used for classifying the type of a problem, separate from its hardness measured with average time to solution. This study uses fifteen combinatorial graphs to classify 40 evolutionary computation problems. The resulting classification is done using neighbor joining, and the results are also displayed using non-linear projection. The different methods of grouping evolutionary computation problems into similar types exhibit substantial agreement. Numerical optimization problems form a close grouping while some other groups of problems scatter across the taxonomy. This paper updates an earlier taxonomy of 23 problems and introduces new classification techniques.

Published in:

Evolutionary Computation, 2006. CEC 2006. IEEE Congress on

Date of Conference:

0-0 0

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.