By Topic

Power penalty due to the amplitude and phase response ripple of a dispersion compensating fiber Bragg grating for chirped optical signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. Cheng ; Dept. of Electr. & Comput. Eng., Queen's Univ., Kingston, Ont., Canada ; J. C. Cartledge

A concise method is presented for rigorously calculating the power penalty due to the combined implications of the amplitude and phase response ripples of a dispersion compensating fiber Bragg grating and the chirp of the transmitted optical signal. By using trigonometric series to represent the ripples, the calculated penalty can be positive or negative, as obtained in numerical simulations and measurements, depending on the signal chirp and ripple within the modulated signal bandwidth. An approximate upper bound on the power penalty is also presented as an extension of earlier results that always yield positive penalties. Calculated and measured results are compared for two 10-Gb/s return-to-zero (RZ) signals with distinct chirp properties

Published in:

Journal of Lightwave Technology  (Volume:24 ,  Issue: 9 )