By Topic

Impact of number of angles on the performance of the data vortex optical interconnection network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hawkins, C. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA ; Wills, D.S.

Reducing communication latency in multiprocessor interconnection networks can increase system performance on a broad range of applications. The data vortex photonic network reduces message latency by utilizing all-optical end-to-end transparent links and deflection routing. Cylinders replace node storage for buffering messages. The cylinder circumference (measured as number of angles) has a significant impact on the message acceptance rate and average message latency. A new symmetric mode of usage for the data vortex is discussed in which a fraction of the angles is used for input/output (I/O), and the remainder is used for "virtual buffering" of messages. For single-angle injection, six total angles provide the best performance. Likewise, the same ratio of 5 : 1 purely routing nodes versus I/O nodes is shown to produce greater than 99% acceptance, under normal loading conditions for all other network sizes studied. It is shown that for a given network I/O size, a shorter height and wider circumference data vortex organization provides acceptable latency with fewer total nodes than a taller but narrower data vortex. The performance versus system cost is discussed and evaluated, and the 5 : 1 noninjection-to-injection angle ratio is shown to be cost effective when constructing a system in current optical technology

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 9 )