Cart (Loading....) | Create Account
Close category search window
 

Linewidth Enhancement Factor of Quantum-Dot Optical Amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vazquez, J.M. ; Sch. of Eng. & Phys. Sci., Napier Univ. of Edinburgh ; Nilsson, H.H. ; Zhang, J.-Z. ; Galbraith, I.

The linewidth enhancement (alpha-) factor of quantum-dot (QD) semiconductor optical amplifiers in the small signal gain and nonlinear regimes is theoretically investigated. A microscopic polarization equation and a wave equation are used to model subpicosecond pulse propagation in the nonlinear regime. In addition, a population equation that takes into account spectral hole burning and carrier heating effects is used. A novel approach to obtain the alpha-factor from the output pulse amplitude and phase in the dynamic nonlinear regime is presented. An in-depth study reveals that the presence of excited states (ES) limits the alpha-factor to values greater than 1 except when the energy separation between the ground state and ES is large. The alpha-factor dependence on QD inhomogeneous broadening, carrier density, carrier temperature, energy level separation, and input pulse energy is analyzed. We find that these can change the alpha-factor considerably. In particular, the alpha-factor increases with increasing input pulse energy and can be greater than 10 for input pulse energies larger than the amplifier's input pulse saturation energy. In the light of our calculations, the optimum device engineering required to obtain a low alpha-factor is discussed

Published in:

Quantum Electronics, IEEE Journal of  (Volume:42 ,  Issue: 10 )

Date of Publication:

Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.