By Topic

Formal Derivation of Direct Torque Control for Induction Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sorchini, Z. ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL ; Krein, P.T.

Direct torque control (DTC) is an induction motor control technique that has been successful because it explicitly considers the inverter stage and uses few machine parameters, while being more robust to parameter uncertainty than field-oriented control (FOC). This paper presents a formal derivation of DTC based on singular perturbation and nonlinear control tools. The derivation elaborates an explicit relationship between DTC performance and machine characteristics; low-leakage machines are expected to perform better under DTC. It is shown that DTC is a special case of a sliding-mode controller based on the multiple time-scale properties of the induction machine. The known troublesome machine operating regimes are predicted and justified. Explicit conditions to guarantee stability are presented. DTC is shown to be a suboptimal controller because it uses more control effort than is required for flux regulation. Finally, compensation strategies that extend DTC are discussed. The derivation does not require space vector concepts thus, it is established that the traditional link between DTC and space vectors is not fundamental

Published in:

Power Electronics, IEEE Transactions on  (Volume:21 ,  Issue: 5 )