By Topic

The Power Loss Optimization of a Current Fed ZVS Two-Inductor Boost Converter With a Resonant Transition Gate Drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Q. Li ; Fac. of Sci., Eng. & Health, Queensland Univ., Rockhampton, Qld. ; P. Wolfs

This paper develops a power loss optimization method in a current fed zero-voltage switching (ZVS) two-inductor boost converter, which is suitable for the module integrated converter applications in grid interactive photovoltaic systems. The paper conducts the numerical analysis of the variable power loss components and establishes a set of the circuit parameters for an optimized operating point with a minimized average power loss. The ZVS two-inductor boost cell is fed from a sinusoidally modulated two-phase synchronous buck converter with an interphase transformer and produces a rectified sinusoidal voltage, which can be applied to an unfolding stage to generate the grid compatible voltage. The boost cell is also equipped with a resonant transition gate drive circuit to reduce the power loss in the drive circuit under high frequency operations. The experimental results for a prototype 1-MHz 100-W ZVS two-inductor boost converter are presented at the end of the paper

Published in:

IEEE Transactions on Power Electronics  (Volume:21 ,  Issue: 5 )