By Topic

Accurate and Fast Off and Online Fuzzy ARTMAP-Based Image Classification With Application to Genetic Abnormality Diagnosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vigdor, B. ; Dept. of Electr. & Comput. Eng., Ben-Gurion Univ. of the Negev, Beer-Sheva ; Lerner, B.

We propose and investigate the fuzzy ARTMAP neural network in off and online classification of fluorescence in situ hybridization image signals enabling clinical diagnosis of numerical genetic abnormalities. We evaluate the classification task (detecting a several abnormalities separately or simultaneously), classifier paradigm (monolithic or hierarchical), ordering strategy for the training patterns (averaging or voting), training mode (for one epoch, with validation or until completion) and model sensitivity to parameters. We find the fuzzy ARTMAP accurate in accomplishing both tasks requiring only very few training epochs. Also, selecting a training ordering by voting is more precise than if averaging over orderings. If trained for only one epoch, the fuzzy ARTMAP provides fast, yet stable and accurate learning as well as insensitivity to model complexity. Early stop of training using a validation set reduces the fuzzy ARTMAP complexity as for other machine learning models but cannot improve accuracy beyond that achieved when training is completed. Compared to other machine learning models, the fuzzy ARTMAP does not loose but gain accuracy when overtrained, although increasing its number of categories. Learned incrementally, the fuzzy ARTMAP reaches its ultimate accuracy very fast obtaining most of its data representation capability and accuracy by using only a few examples. Finally, the fuzzy ARTMAP accuracy for this domain is comparable with those of the multilayer perceptron and support vector machine and superior to those of the naive Bayesian and linear classifiers

Published in:

Neural Networks, IEEE Transactions on  (Volume:17 ,  Issue: 5 )