By Topic

Forming Microstructured Alkanethiol Self-Assembled Monolayers on Gold by Laser Ablation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Rhinow ; Marburg Univ. ; N. A. Hampp

A process to form microstructured alkanethiol self-assembled monolayers (SAMs) on gold is described. It is well known that alkanethiols spontaneously form homogenous SAMs on gold surfaces. By means of laser ablation, the exposed areas of alkanethiol monolayers can be removed from the gold surface. Free gold is obtained which can react further with second and third thiols. By this technique, structured alkanethiol SAMs are obtained reliably and easily. In a rather narrow window of pulse intensities, in our example 120 MW/cm2plusmn10% from a frequency-doubled Nd :YVO4 laser with 6-ns pulsewidth operating at a repetition rate of 20 kHz, ablation of alkanethiol monolayers is obtained without causing any damage to the gold substrate. Examples are presented where lines down to 10 mum in width were laser ablated into an SAM formed either from a hydrophilic or a hydrophobic alkanethiol and filled with a monolayer of a second alkanethiol of opposite hydrophilicity. The patterned structures were examined by optical and fluorescence microscopy as well as by lateral force microscopy. The presented method enables the preparation of microstructured SAMs on gold and probably on a wide variety of other substrates

Published in:

IEEE Transactions on NanoBioscience  (Volume:5 ,  Issue: 3 )