By Topic

Traffic Engineering and Quality of Service Management for IP-based NGNs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pavlou, G. ; Surrey Univ., Guildford

Summary form only given. Next generation IP-based networks will offer quality of service (QoS) guarantees by deploying technologies such as differentiated services (DiffServ) and multi-protocol label switching (MPLS) for traffic engineering and network-wide resource management. Despite the progress already made, a number of issues still exist regarding edge-to-edge intra-domain and inter-domain QoS provisioning and management. This tutorial will start by providing background on technologies such as DiffServ, MPLS and their potential combination for QoS support. It will subsequently introduce trends in service level agreements (SLAs) and service level specifications (SLSs) for the subscription to QoS-based services It will then move to examine architectures and frameworks for the management and control of QoS-enabled networks, including the following aspects: approaches and algorithms for off-line traffic engineering and provisioning through explicit MPLS paths or through hop-by-hop IP routing; approaches for dynamic resource management to deal with traffic fluctuations outside the predicted envelope; a service management framework supporting a "resource provisioning cycle"; the derivation of expected traffic demand from subscribed SLSs and approaches for SLS invocation admission control; a monitoring architecture for scalable information collection supporting traffic engineering and service management; and realization issues given the current state-of-the-art of management protocols and monitoring support. The tutorial will also include coverage of emerging work towards inter-domain QoS provisioning, including aspects such as: an inter-domain business model; customer and peer provider SLSs; an architecture for the management and control of inter-domain services; inter-domain off-line traffic engineering; and QoS extensions to BGP for dynamic traffic engineering. Relevant industrial activities such as IPsphere will be also covered. In all these areas, recent research- - work will be presented, with pointers to bibliography and a specially tailored Web page with additional resources

Published in:

Network Operations and Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP

Date of Conference:

3-7 April 2006