By Topic

Predictive Control for Dynamic Resource Allocation in Enterprise Data Centers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wei Xu ; California Univ., Berkeley, CA ; Xiaoyun Zhu ; Singhal, S. ; Zhikui Wang

It is challenging to reduce resource over-provisioning for enterprise applications while maintaining service level objectives (SLOs) due to their time-varying and stochastic workloads. In this paper, we study the effect of prediction on dynamic resource allocation to virtualized servers running enterprise applications. We present predictive controllers using three different prediction algorithms based on a standard auto-regressive (AR) model, a combined ANOVA-AR model, as well as a multi-pulse (MP) model. We compare the properties of the predictive controllers with an adaptive integral (I) controller designed in our earlier work on controlling relative utilization of resource containers. The controllers are evaluated in a hypothetical virtual server environment where we use the CPU utilization traces collected on 36 servers in an enterprise data center. Since these traces were collected in an open-loop environment, we use a simple queuing algorithm to simulate the closed-loop CPU usage under dynamic control of CPU allocation. We also study the controllers by emulating the utilization traces on a test bed where a Web server was hosted inside a Xen virtual machine. We compare the results of these controllers from all the servers and find that the MP-based predictive controller performed slightly better statistically than the other two predictive controllers. The ANOVA-AR-based approach is highly sensitive to the existence of periodic patterns in the trace, while the other three methods are not. In addition, all the three predictive schemes performed significantly better when the prediction error was accounted for using a feedback mechanism. The MP-based method also demonstrated an interesting self-learning behavior

Published in:

Network Operations and Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP

Date of Conference:

3-7 April 2006