By Topic

Submicrometer self-aligned AlGaAs/GaAs heterojunction bipolar transistor process suitable for digital applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A self-aligned process is developed to obtain submicrometer high-performance AlGaAs/GaAs heterojunction bipolar transistors (HBTs) which can maintain a high current gain for emitter sizes on the order of 1 μm2. The major features of the process are incorporation of an AlGaAs surface passivation structure around the entire emitter-base junction periphery to reduce surface recombination and reliable removal of base metal (Ti/W) deposits from the sidewall by electron cyclotron resonance (ECR) plasma deposition of oxide and ECR plasma etching by NF3. A DC current gain of more than 30 can be obtained for HBTs with an emitter-base junction area of 0.5×2 μm2 at submilliampere collector currents. The maximum fT and fmax obtained from a 0.5×2 μm2 emitter HBT are 46 and 42 GHz, respectively at IC=1.5 and more than 20 GHz even at IC=0.1 mA

Published in:

Electron Devices, IEEE Transactions on  (Volume:39 ,  Issue: 12 )