By Topic

Ternary Cyclo-Decompositions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Abstract—This note discusses a particular kind of ternary functional decomposition based on a ternary function ↑ to be performed on the set of composite functions. Such function is closely related to the cycling concept of Postian algebras. A systematic method is given to determine the set of all decompositions of that kind admitted by the function. Such set is called the cyclo-set and it is proved that it is a filter in the partitions lattice. Since any partition of the lattice can be expressed as an intersection of cardinality-2 partitions, it follows that the method consists merely in finding the infimum of the cardinality-2 partitions belonging to the cyclo-set and then determining the filter having this infimum as vertex. The existence of proper subsets of the cardinality-2 partitions set leading to the determination of the ifiter-vertex is discussed, and results obtained for functions of domain-order up to seven are stated. Finally, the total number of cyclo-decompositions for a given partitional structure is calculated.

Published in:

Computers, IEEE Transactions on  (Volume:C-17 ,  Issue: 12 )