By Topic

Inverted thin-film transistors with a simple self-aligned lightly doped drain structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liu, C.-T. ; AT&T Bell Lab., Allentown, PA, USA ; Yu, C.-H.D. ; Kornblit, Avi ; Kuo-hua Lee

The I-V characteristics of inverted thin-film transistors (TFT) are studied. A simple lightly doped drain (LDD) structure is utilized to control the channel electric field at the drain junction and to improve the performance of the TFTs. The LDD region is self-aligned to the channel and the source/drain regions. It is created by a spacer around an oxide mask which exclusively defines the channel length Lch. Experimental data show that the leakage current, subthreshold swing SS, saturation current, and on/off current ratio of the inverted TFTs are closed related to Lch, LLDD, the drain bias, gate voltage, and LDD dose. With a gate deposited at low temperature, a saturation current of ~1.25 μA at 5 V and a leakage current of ~0.03 pA per micrometer of channel width were achieved. The current ratio therefore exceeds seven orders of magnitude, with an SS of 380 mV/decade. At 3.3 V, the current ratio is ~7×106

Published in:

Electron Devices, IEEE Transactions on  (Volume:39 ,  Issue: 12 )