Cart (Loading....) | Create Account
Close category search window
 

A Recurrent Fuzzy Coupled Cellular Neural Network System With Automatic Structure and Template Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chun-Lung Chang ; Mech. & Syst. Res. Labs., Ind. Technol. Res. Inst., Hsinchu ; Kan-Wei Fan ; I-Fang Chung ; Chin-Teng Lin

The cellular neural network (CNN) is a powerful technique to mimic the local function of biological neural circuits, especially the human visual pathway system, for real-time image and video processing. Recently, many studies show that an integrated CNN system can solve more complex high-level intelligent problems. In this brief, we extend our previously proposed multi-CNN integrated system, called recurrent fuzzy CNN (RFCNN) which considers uncoupled CNNs only, to automatically learn the proper network structure and parameters simultaneously of coupled CNNs, which is called recurrent fuzzy coupled CNN (RFCCNN). The proposed RFCCNN provides a solution to the current dilemma on the decision of templates and/or fuzzy rules in the existing integrated (fuzzy) CNN systems. For comparison, the capability of the proposed RFCCNN is demonstrated on the same defect inspection problems. Simulation results show that the proposed RFCCNN outperforms the RFCNN

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:53 ,  Issue: 8 )

Date of Publication:

Aug. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.