By Topic

Finite-SNR Diversity–Multiplexing Tradeoff for Correlated Rayleigh and Rician MIMO Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Narasimhan, R. ; Dept. of Electr. Eng., California Univ., Santa Cruz, CA

A nonasymptotic framework is presented to analyze the diversity-multiplexing tradeoff of a multiple-input-multiple-output (MIMO) wireless system at finite signal-to-noise ratios (SNRs). The target data rate at each SNR is proportional to the capacity of an additive white Gaussian noise (AWGN) channel with an array gain. The proportionality constant, which can be interpreted as a finite-SNR spatial multiplexing gain, dictates the sensitivity of the rate adaptation policy to SNR. The diversity gain as a function of SNR for a fixed multiplexing gain is defined by the negative slope of the outage probability versus SNR curve on a log-log scale. The finite-SNR diversity gain provides an estimate of the additional power required to decrease the outage probability by a target amount. For general MIMO systems, lower bounds on the outage probabilities in correlated Rayleigh fading and Rician fading are used to estimate the diversity gain as a function of multiplexing gain and SNR. In addition, exact diversity gain expressions are determined for orthogonal space-time block codes (OSTBC). Spatial correlation significantly lowers the achievable diversity gain at finite SNR when compared to high-SNR asymptotic values. The presence of line-of-sight (LOS) components in Rician fading yields diversity gains higher than high-SNR asymptotic values at some SNRs and multiplexing gains while resulting in diversity gains near zero for multiplexing gains larger than unity. Furthermore, as the multiplexing gain approaches zero, the normalized limiting diversity gain, which can be interpreted in terms of the wideband slope and the high-SNR slope of spectral efficiency, exhibits slow convergence with SNR to the high-SNR asymptotic value. This finite-SNR framework for the diversity-multiplexing tradeoff is useful in MIMO system design for realistic SNRs and propagation environments

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 9 )