By Topic

Convex Programming Formulations for Rate Allocation in Video Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sermadevi, Y. ; Microsoft Corp., Redmond, WA ; Hemami, S.S. ; Masry, M.

A rate control technique for video encoding under complex transmission scenarios is presented. A typical application for this method is the transmission of video over variable bit rate channels while accounting for restrictions on the end-to-end delay and decoder buffer size. That the resulting multiple constraints on the source and channel rates may be relaxed without loss of optimality into a set of linear inequality constraints-though they are usually expressed in nonlinear form-is a key insight of this paper. This allows for a systematic treatment of a large class of rate constraints and leads to a convex programming (CP) formulation for rate control. Approximation of the frame distortion-rate data by piecewise linear functions further facilitates an efficient solution based on linear programming (LP), a special case of CP. The LP method provides bounds for the deviation from optimality. Results for a standard video test set show that the proposed method provides solutions with mean square error (MSE) distortion value within 2% of the global minimum across a range of rates. The proposed technique is also applied in conjunction with a perceived distortion measure. Results exhibit significant reduction in blocking artifacts and flicker compared to the use of MSE

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:16 ,  Issue: 8 )