By Topic

Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Min-Ling Zhang ; Nat. Lab. for Novel Software Technol., Nanjing Univ. ; Zhi-Hua Zhou

In multilabel learning, each instance in the training set is associated with a set of labels and the task is to output a label set whose size is unknown a priori for each unseen instance. In this paper, this problem is addressed in the way that a neural network algorithm named BP-MLL, i.e., backpropagation for multilabel learning, is proposed. It is derived from the popular backpropagation algorithm through employing a novel error function capturing the characteristics of multilabel learning, i.e., the labels belonging to an instance should be ranked higher than those not belonging to that instance. Applications to two real-world multilabel learning problems, i.e., functional genomics and text categorization, show that the performance of BP-MLL is superior to that of some well-established multilabel learning algorithms

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 10 )