By Topic

Tamper Proofing by Design Using Generalized Involution-Based Concurrent Error Detection for Involutional Substitution Permutation and Feistel Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Joshi, N. ; Electr. & Comput. Eng. Dept., Polytech. Univ. Brooklyn ; Sundararajan, J. ; Kaijie Wu ; Bo Yang
more authors

Secure operation of cryptographic algorithms is critical to the success of secure transactions. Fault-based attacks that recover secret keys by deliberately introducing fault(s) in cipher implementations and analyzing the faulty outputs have been proven to be extremely powerful. Substitution permutation networks (SPN) and Feistel networks (FN) are the two important classes of symmetric block ciphers. Some SPN ciphers and all FN ciphers satisfy the involution property. A function F is an involution if F(F(x)) = x. In this paper, we investigate tamper proofing techniques that use low cost involution-based time redundancy concurrent error detection (CED) schemes for involutional SPN and FN symmetric block ciphers. We incorporated this tamper proofing by design technique in a hardware implementation of the 128-bit ANUBIS SPN cipher (an involution variant of the advanced encryption standard (AES)) and the 128-bit TwoFish FN cipher (an AES finalist). We performed fault simulation at both the algorithm and the gate level to show that the low-cost involution-based CED schemes, in addition to detecting all transient faults, can detect all single-bit permanent faults and > 99 percent of all multiple-bit permanent faults. Consequently, this low cost CED technique can protect the crypto device against differential fault analysis (DFA) attacks

Published in:

Computers, IEEE Transactions on  (Volume:55 ,  Issue: 10 )