By Topic

Classifying Very Large Data Sets with Minimum Enclosing Ball Based Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jin, B. ; Georgia State Univ., Atlanta ; Yan-Qing Zhang

Due to the fact that the training time and space complexities of SVMs are mainly dependent on the size of training set, SVMs are not suitable for classifying large data sets with several millions of examples. To solve this problem, we in this paper propose a new algorithm called minimum enclosing ball (MEB) based SVM (MEB-SVM). In MEB-SVM, the boundary of each class data set is first measured by several MEBs, and then an SVM is trained by the data locating on the two class boundaries. Experiments on the KDDCUP-99 intrusion detection data set with about five million examples, the Ringnorm artificial data set with one hundred million examples, and the NDC data set with two million examples show that the new algorithm has competitive performance in terms of running time, testing accuracy and number of support vectors.

Published in:

Fuzzy Systems, 2006 IEEE International Conference on

Date of Conference:

0-0 0