By Topic

Learning In Lattice Neural Networks that Employ Dendritic Computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ritter, G.X. ; Univ. of Florida, Gainesville ; Schmalz, M.S.

Recent discoveries in neuroscience imply that the basic computational elements are the dendrites that make up more than 50% of a cortical neuron's membrane. Neuroscientists now believe that the basic computation units are dendrites, capable of computing simple logic functions. This paper discusses two types of neural networks that take advantage of these new discoveries. The focus of this paper is on some learning algorithms in the two neural networks. Learning is in terms of lattice computations that take place in the dendritic structure as well as in the cell body of the neurons used in this model.

Published in:

Fuzzy Systems, 2006 IEEE International Conference on

Date of Conference:

0-0 0