By Topic

MUSTANG: state assignment of finite state machines targeting multilevel logic implementations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Devadas, S. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Hi-Keung Ma ; Newton, A.R. ; Sangiovanni-Vincentelli, A.

The problem of state assignment for synchronous finite-state machines (FSM), targeted towards multilevel combinational logic and feedback register implementations, are addressed. The authors present state-assignment algorithms that heuristically maximize the number of common cubes in the encoded network to maximize the number of literals in the resulting combinational logic network after multilevel logic optimization. Results over a wide range of benchmarks which prove the efficacy of the proposed techniques are presented. Literal counts averaging 20%-40% less than other state-assignment programs have been obtained.<>

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:7 ,  Issue: 12 )