By Topic

Bioinformatics with soft computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mitra, S. ; Dept. of Comput. Sci., Meiji Univ., Kawasaki ; Hayashi, Y.

Soft computing is gradually opening up several possibilities in bioinformatics, especially by generating low-cost, low-precision (approximate), good solutions. In this paper, we survey the role of different soft computing paradigms, like fuzzy sets (FSs), artificial neural networks (ANNs), evolutionary computation, rough sets (RSes), and support vector machines (SVMs), in this direction. The major pattern-recognition and data-mining tasks considered here are clustering, classification, feature selection, and rule generation. Genomic sequence, protein structure, gene expression microarrays, and gene regulatory networks are some of the application areas described. Since the work entails processing huge amounts of incomplete or ambiguous biological data, we can utilize the learning ability of neural networks for adapting, uncertainty handling capacity of FSs and RSes for modeling ambiguity, searching potential of genetic algorithms for efficiently traversing large search spaces, and the generalization capability of SVMs for minimizing errors

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:36 ,  Issue: 5 )