By Topic

A predictive control strategy for nonlinear NOx decomposition process in thermal power plants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hui Peng ; Sch. of Inf. Sci. & Eng., Central South Univ., Hunan ; Weihua Gui ; Shioya, H. ; Zou, R.

For the load-dependent nonlinear properties of the nitrogen oxide (NOx) decomposition process in thermal power plants, a local-linearization modeling approach based on a kind of global Nonlinear AutoRegressive Moving Average with eXogeneous input (NARMAX) model, named the exponential ARMAX (ExpARMAX) model, is presented. The ExpARMAX model has exponential-type coefficients that depend on the load of power plants and are estimated offline. In order to take advantage of existing conventional controllers and to reduce the cost of the industrial identification experiment, we propose a model structure that makes it possible for the ExpARMAX model to be identified using commercial operation data. On the basis of the model, a long-range predictive control strategy, without resorting to parameter estimation online, is investigated. The influence of some intermediate variables treated as process disturbances is studied, and the scheme using a set of multi-step-ahead predictors of the intermediate variables to improve control performance is also presented. A simulation study shows that the ExpARMAX model can give satisfactory modeling accuracy for the NOx decomposition (de-NOx) process in a large operating range, and the control algorithm proposed significantly improves the control performance

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:36 ,  Issue: 5 )