By Topic

Large margin hidden Markov models for speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hui Jiang ; Dept. of Comput. Sci. & Eng., York Univ., Toronto, Ont. ; Xinwei Li ; Chaojun Liu

In this paper, motivated by large margin classifiers in machine learning, we propose a novel method to estimate continuous-density hidden Markov model (CDHMM) for speech recognition according to the principle of maximizing the minimum multiclass separation margin. The approach is named large margin HMM. First, we show this type of large margin HMM estimation problem can be formulated as a constrained minimax optimization problem. Second, we propose to solve this constrained minimax optimization problem by using a penalized gradient descent algorithm, where the original objective function, i.e., minimum margin, is approximated by a differentiable function and the constraints are cast as penalty terms in the objective function. The new training method is evaluated in the speaker-independent isolated E-set recognition and the TIDIGITS connected digit string recognition tasks. Experimental results clearly show that the large margin HMMs consistently outperform the conventional HMM training methods. It has been consistently observed that the large margin training method yields significant recognition error rate reduction even on top of some popular discriminative training methods

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:14 ,  Issue: 5 )