By Topic

How Multirobot Systems Research will Accelerate our Understanding of Social Animal Behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Balch, T. ; Dept. of Interactive & Intelligent Comput., Georgia Inst. of Technol., Atlanta, GA ; Dellaert, F. ; Feldman, A. ; Guillory, A.
more authors

Our understanding of social insect behavior has significantly influenced artificial intelligence (AI) and multirobot systems' research (e.g., ant algorithms and swarm robotics). In this work, however, we focus on the opposite question: "How can multirobot systems research contribute to the understanding of social animal behavior?" As we show, we are able to contribute at several levels. First, using algorithms that originated in the robotics community, we can track animals under observation to provide essential quantitative data for animal behavior research. Second, by developing and applying algorithms originating in speech recognition and computer vision, we can automatically label the behavior of animals under observation. In some cases the automatic labeling is more accurate and consistent than manual behavior identification. Our ultimate goal, however, is to automatically create, from observation, executable models of behavior. An executable model is a control program for an agent that can run in simulation (or on a robot). The representation for these executable models is drawn from research in multirobot systems programming. In this paper we present the algorithms we have developed for tracking, recognizing, and learning models of social animal behavior, details of their implementation, and quantitative experimental results using them to study social insects

Published in:

Proceedings of the IEEE  (Volume:94 ,  Issue: 7 )