By Topic

Low complexity user selection algorithms for multiuser MIMO systems with block diagonalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zukang Shen ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA ; Runhua Chen ; J. G. Andrews ; R. W. Heath
more authors

Block diagonalization (BD) is a precoding technique that eliminates interuser interference in downlink multiuser multiple-input multiple-output (MIMO) systems. With the assumptions that all users have the same number of receive antennas and utilize all receive antennas when scheduled for transmission, the number of simultaneously supportable users with BD is limited by the ratio of the number of base station transmit antennas to the number of user receive antennas. In a downlink MIMO system with a large number of users, the base station may select a subset of users to serve in order to maximize the total throughput. The brute-force search for the optimal user set, however, is computationally prohibitive. We propose two low-complexity suboptimal user selection algorithms for multiuser MIMO systems with BD. Both algorithms aim to select a subset of users such that the total throughput is nearly maximized. The first user selection algorithm greedily maximizes the total throughput, whereas the criterion of the second algorithm is based on the channel energy. We show that both algorithms have linear complexity in the total number of users and achieve around 95% of the total throughput of the complete search method in simulations

Published in:

IEEE Transactions on Signal Processing  (Volume:54 ,  Issue: 9 )