Cart (Loading....) | Create Account
Close category search window
 

Convergence analysis of a deterministic discrete time system of feng's MCA learning algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dezhong Peng ; Coll. of Comput. Sci. & Eng., Univ. of Electron. Sci. & Technol. of China ; Zhang Yi

The convergence of minor-component analysis (MCA) algorithms is an important issue with bearing on the use of these methods in practical applications. This correspondence studies the convergence of Feng's MCA learning algorithm via a corresponding deterministic discrete-time (DDT) system. Some sufficient convergence conditions are obtained for Feng's MCA learning algorithm with constant learning rate. Simulations are carried out to illustrate the theory

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 9 )

Date of Publication:

Sept. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.