Cart (Loading....) | Create Account
Close category search window
 

Diversity and channel estimation using time-varying signals and time-frequency techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hao Shen ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ ; Papandreou-Suppappola, A.

We propose the use of time-varying (TV) signaling in modulation schemes to provide multiuser detection and multipath diversity in TV wireless channels. Specifically, we design an orthogonal linear chirp modulation scheme that is based on assigning different users with optimally designed parameters in order to reduce multiple-access interference. We also derive conditions on the parameters of the modulation signals to achieve multipath diversity. Furthermore, we propose the use of TV pilot signals with nonlinear instantaneous frequency and matched time-frequency (TF) techniques to estimate fast-fading channels with unknown state information. The proposed algorithm simplifies to the estimation of the parameters of multiple linear chirps, which we perform using the modified matching pursuit decomposition. We compare our estimation method with the use of pilot signals with linear instantaneous frequency, which we implement using the reassigned spectrogram. The proposed modulation scheme is applied to a frequency-hopped code-division multiple-access system for which we demonstrate improved performance when compared with frequency-shift-keying (FSK) modulation due to the designed multipath diversity and low multiple-access interference. Our simulations also demonstrate the increased estimation performance when pilot signals with nonlinear structures are used instead of linear structured ones to estimate TV channel parameters

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 9 )

Date of Publication:

Sept. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.