Cart (Loading....) | Create Account
Close category search window
 

On joint detection and decoding of linear block codes on Gaussian vector channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vikalo, H. ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA ; Hassibi, B.

Optimal receivers recovering signals transmitted across noisy communication channels employ a maximum-likelihood (ML) criterion to minimize the probability of error. The problem of finding the most likely transmitted symbol is often equivalent to finding the closest lattice point to a given point and is known to be NP-hard. In systems that employ error-correcting coding for data protection, the symbol space forms a sparse lattice, where the sparsity structure is determined by the code. In such systems, ML data recovery may be geometrically interpreted as a search for the closest point in the sparse lattice. In this paper, motivated by the idea of the "sphere decoding" algorithm of Fincke and Pohst, we propose an algorithm that finds the closest point in the sparse lattice to the given vector. This given vector is not arbitrary, but rather is an unknown sparse lattice point that has been perturbed by an additive noise vector whose statistical properties are known. The complexity of the proposed algorithm is thus a random variable. We study its expected value, averaged over the noise and over the lattice. For binary linear block codes, we find the expected complexity in closed form. Simulation results indicate significant performance gains over systems employing separate detection and decoding, yet are obtained at a complexity that is practically feasible over a wide range of system parameters

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 9 )

Date of Publication:

Sept. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.