By Topic

Applications of Independent Component Analysis in Endmember Extraction and Abundance Quantification for Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Wang ; Dept. of Comput. Sci. & Electr. Eng., Maryland Univ., Baltimore, MD ; C. -I. Chang

Independent component analysis (ICA) has shown success in many applications. This paper investigates a new application of the ICA in endmember extraction and abundance quantification for hyperspectral imagery. An endmember is generally referred to as an idealized pure signature for a class whose presence is considered to be rare. When it occurs, it may not appear in large population. In this case, the commonly used principal components analysis may not be effective since endmembers usually contribute very little in statistics to data variance. In order to substantiate the author's findings, an ICA-based approach, called ICA-based abundance quantification algorithm (ICA-AQA) is developed. Three novelties result from the author's proposed ICA-AQA. First, unlike the commonly used least squares abundance-constrained linear spectral mixture analysis (ACLSMA) which is a second-order statistics-based method, the ICA-AQA is a high-order statistics-based technique. Second, due to the use of statistical independency, it is generally thought that the ICA cannot be implemented as a constrained method. The ICA-AQA shows otherwise. Third, in order for the ACLSMA to perform the abundance quantification, it requires an algorithm to find image endmembers first then followed by an abundance-constrained algorithm for quantification. As opposed to such a two-stage process, the ICA-AQA can accomplish endmember extraction and abundance quantification simultaneously in one-shot operation. Experimental results demonstrate that the ICA-AQA performs at least comparably to abundance-constrained methods

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:44 ,  Issue: 9 )