Cart (Loading....) | Create Account
Close category search window
 

A Model-Based Approach to Multiresolution Fusion in Remotely Sensed Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Joshi, M.V. ; Dhirubhai Ambam Inst. of Inf. & Commun. Technol., Gujarat ; Bruzzone, L. ; Chaudhuri, S.

In this paper, a model-based approach to multiresolution fusion of remotely sensed images is presented. Given a high spatial resolution panchromatic (Pan) image and a lowspatial resolution multispectral (MS) image acquired on the same geographical area, the presented method aims to enhance the spatial resolution of the MS image to the resolution of the Pan observation. The proposed fusion technique utilizes the spatial correlation of each of the high-resolution MS channels by using an autoregressive (AR) model, whose parameters are learnt from the analysis of the Pan data. Under the assumption that the parameters of the AR model for the Pan image are the same as those that represent the MS images due to spectral correlation, the proposed technique exploits the learnt parameter values in the context of a proper regularization technique to estimate the high spatial resolution fields for the MS bands. This results in a combination of the spectral characteristics of the low-resolution MS data with the high spatial resolution of the Pan image. The main advantages of the proposed technique are: 1) unlike standard methods proposed in the literature, it requires no registration between the Pan and the MS images; 2) it models effectively the texture of the scene during the fusion process; 3) it shows very small spectral distortion (as it is less affected, compared to standard methods, by the specific digital numbers of pixels in the Pan image, since it exploits the learnt parameters from the Pan image rather than the actual Pan digital numbers for fusion); and 4) it can be used in critical situations in which the Pan and the MS images are acquired (also by different sensors) in slightly different areas. Quantitative experimental results obtained using Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Quickbird images point out the effectiveness of the proposed method

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:44 ,  Issue: 9 )

Date of Publication:

Sept. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.