By Topic

Global Simulation of Brightness Temperatures at 6.6 and 10.7 GHz Over Land Based on SMMR Data Set Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. Pellarin ; Lab. d'etudes des Transferts en Hydrologie et Environnement, CNRS, Grenoble ; Y. H. Kerr ; J. -P. Wigneron

In the framework of the Soil Moisture and Ocean Salinity mission, a two-year (1987-1988) global simulation of brightness temperatures (TB) at L-band was performed using a simple model [L-band microwave emission of the biosphere, (L-MEB)] based on radiative transfer equations. However, the lack of alternative L-band spaceborne measurements corresponding to real-world data prevented from assessing the realism of the simulated global-scale TB fields. In this study, using a similar modeling approach, TB simulations were performed at C-band and X-band. These simulations required the development of C-MEB and X-MEB models, corresponding to the equivalent of L-MEB at C-band and X-band, respectively. These simulations were compared with Scanning Multichannel Microwave Radiometer (SMMR) measurements during the period January to August 1987 (corresponding to the end of life of the SMMR mission). A sensitivity study was also carried out to assess, at a global scale, the relative contributions of the main MEB parameters (particularly the roughness and vegetation model parameters). Regional differences between simulated and measured TBs were analyzed, discriminating possible issues either linked to the radiative transfer model (C-MEB and X-MEB) or due to land surface simulations. A global agreement between observations and simulations was discussed and allowed to evaluate regions where soil moisture retrievals would give best results. This comparison step made at C-band and X-band allowed to better assess how realistic and/or accurate the L-band simulations could be

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:44 ,  Issue: 9 )