Cart (Loading....) | Create Account
Close category search window
 

Generation of Functional Broadside Tests for Transition Faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pomeranz, I. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN ; Reddy, S.M.

Scan design allows a circuit to be tested using states that the circuit cannot enter during functional operation. It was observed that nonfunctional operation during testing may cause excessive currents that can cause a good chip to fail the test because of voltage droops caused by the excessive current demand. A good chip may also fail due to the propagation of signal transitions along nonfunctional long paths, especially during at-speed testing. This problem is studied in this paper in the context of tests for transition faults. A method for determining transition faults that are untestable under functional operation-conditions is described. Two procedures for generating transition-fault tests that use only functional operation conditions are also described. The first procedure accepts as input a broadside test set for transition faults. The second procedure accepts as input a test sequence for the nonscan circuit. Although such a test sequence is more complex to generate and simulate, it results in higher numbers of faults detected under functional operation conditions

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:25 ,  Issue: 10 )

Date of Publication:

Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.