Cart (Loading....) | Create Account
Close category search window
 

Hermite Polynomial Based Interconnect Analysis in the Presence of Process Variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vrudhula, S. ; Dept. of Comput. Sci. & Eng., Arizona State Univ., Tempe, AZ ; Wang, J.M. ; Ghanta, P.

Variations in the interconnect geometry of nanoscale ICs translate to variations in their performance. The resulting diminished accuracy in the estimates of performance at the design stage can lead to a significant reduction in the parametric yield. Thus, determining an accurate statistical description (e.g., moments, distribution, etc.) of the interconnect's response is critical for designers. In the presence of significant variations, device or interconnect model parameters such as wire resistance, capacitance, etc., need to modeled as random variables or as spatial random processes. The corner-based analysis is not accurate, and simulations based on sampling require long computation times due to the large number of parameters or random variables. This study proposes an efficient method of computing the stochastic response of interconnects. The technique models the stochastic response in an infinite dimensional Hilbert space in terms of orthogonal polynomial expansions. A finite representation is obtained by projecting the infinite series representation onto a finite dimensional subspace. The advantage of the proposed method is that it provides a functional representation of the response of the system in terms of the random variables that represent the process variations. The proposed algorithm has been implemented in a procedure called orthogonal polynomial expansions for response analysis (OPERA). Results from OPERA simulations on a number of design test cases match well with those from the classical Monte Carlo simulation program with integrated circuits emphasis (SPICE) and from perturbation methods. Additionally, OPERA shows good computational efficiency: speedup of up to two orders of magnitude have been observed over Monte Carlo SPICE simulations

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:25 ,  Issue: 10 )

Date of Publication:

Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.