By Topic

Desynchronization: Synthesis of Asynchronous Circuits From Synchronous Specifications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. Cortadella ; Software Dept., Univ. Politecnica de Catalunya, Barcelona ; A. Kondratyev ; L. Lavagno ; C. P. Sotiriou

Asynchronous implementation techniques, which measure logic delays at runtime and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst case delays at design time and constrain the clock cycle accordingly. Desynchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus, permitting widespread adoption of asynchronicity without requiring special design skills or tools. In this paper, different protocols for desynchronization are first studied, and their correctness is formally proven using techniques originally developed for distributed deployment of synchronous language specifications. A taxonomy of existing protocols for asynchronous latch controllers, covering, in particular, the four-phase handshake protocols devised in the literature for micropipelines, is also provided. A new controller that exhibits provably maximal concurrency is then proposed, and the performance of desynchronized circuits is analyzed with respect to the original synchronous optimized implementation. Finally, this paper proves the feasibility and effectiveness of the proposed approach by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architecture

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:25 ,  Issue: 10 )