By Topic

Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. S. L. Dolan ; Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada ; P. W. Lehn

To determine the control structures and possible power quality issues, the dynamic torque generated by the blades of a wind turbine must be represented. This paper presents an analytical formulation of the generated aerodynamic torque of a three-bladed wind turbine including the effects of wind shear and tower shadow. The comprehensive model includes turbine-specific parameters such as radius, height, and tower dimensions, as well as the site-specific parameter, the wind shear exponent. The model proves the existence of a 3p pulsation due to wind shear and explains why it cannot be easily identified in field measurements. The proportionality constant between the torque and the wind speed is determined allowing direct aerodynamic torque calculation from an equivalent wind speed. It is shown that the tower shadow effect is more dominant than the wind shear effect in determining the dynamic torque, although there is a small dc reduction in the torque oscillation due to wind shear. The model is suitable for real-time wind turbine simulation or other time domain simulation of wind turbines in power systems

Published in:

IEEE Transactions on Energy Conversion  (Volume:21 ,  Issue: 3 )